

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

DYNAMIC SCHEDULING OF SKIPPABLE PERIODIC

TASKS WITH ENERGY EFFICIENCY IN WEAKLY HARD
REAL-TIME SYSTEM

Santhi Baskaran
1
 and P. Thambidurai

2

1
Department of Information Technology, Pondicherry Engineering College,

Puducherry, India 2
Department of Computer Science and Engineering, Pondicherry Engineering College,

 Puducherry, India

ABSTRACT

Energy consumption is a critical design issue in real-time systems, especially in battery- operated
systems. Maintaining high performance, while extending the battery life between charges is an interesting
challenge for system designers. Dynamic Voltage Scaling (DVS) allows a processor to dynamically
change speed and voltage at run time, thereby saving energy by spreading run cycles into idle time.
Knowing when to use full power and when not, requires the cooperation of the operating system
scheduler. Usually, higher processor voltage and frequency leads to higher system throughput while
energy reduction can be obtained using lower voltage and frequency. Instead of lowering processor
voltage and frequency as much as possible, energy efficient real-time scheduling adjusts voltage and
frequency according to some optimization criteria, such as low energy consumption or high throughput,
while it meets the timing constraints of the real-time tasks. As the quantity and functional complexity of
battery powered portable devices continues to raise, energy efficient design of such devices has become
increasingly important. Many real-time scheduling algorithms have been developed recently to reduce
energy consumption in the portable devices that use DVS capable processors. Extensive power aware
scheduling techniques have been published for energy reduction, but most of them have been focused
solely on reducing the processor energy consumption. While the processor is one of the major power
hungry units in the system, other peripherals such as network interface card, memory banks, disks also
consume significant amount of power. Dynamic Power Down (DPD) technique is used to reduce energy
consumption by shutting down the processing unit and peripheral devices, when the system is idle. Three
algorithms namely Red Tasks Only (RTO), Blue When Possible (BWP) and Red as Late as Possible
(RLP) are proposed in the literature to schedule the real-time tasks in Weakly-hard real-time systems. This
paper proposes optimal slack management algorithms to make the above existing weakly hard real-time
scheduling algorithms energy efficient using DVS and DPD techniques.

KEYWORDS

Weakly-hard Real-time System, Skippable Periodic Task, Energy efficient Scheduling, DVS, DPD

1. INTRODUCTION

Battery powered portable real-time systems have been widely used in many applications. As the
quantity and the functional complexity of battery powered portable devices continues to raise,
energy efficient design of such devices has become increasingly important. Also, these real-time
systems have to concurrently perform a multitude of complex tasks under stringent time
constraints. Thus, minimizing power consumption and extending battery lifespan while
guaranteeing the timing constraints has become a critical aspect in designing such systems. The
interest in real-time systems has been growing steadily since more industrial systems rely on

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

computer based operations. Therefore, the critical applications are being done by the computer
in real-time environment must produce desired result at the correct time. The result (correct
output) not obtained in correct time may be disastrous. As per the definition, the output of real-
time systems not only depends on the correctness of the result but also the time when the result
is produced.

Based on the functional criticality of jobs, usefulness of late results and deterministic or
probabilistic nature of the constraints, the real time systems are classified as, Hard real-time
system in which consequences of not executing a task before its dead line catastrophic or
fatal, Soft real-time system in which the utility of results produced by a task decreases over
time after deadline expires and Firm or Weakly hard real-time system in which the result
produced by a task ceases to be useful as soon as the deadline expires but the consequences of
not meeting the deadline are not very severe [1]. Typical illustrating examples of systems with
weakly-hard real-time requirements are multimedia systems in which it is not necessary to
meet all the task deadlines as long as the deadline violations are adequately spaced [2].

Computations occurring in a real-time system that have timing constraints are called real-time
tasks. A real-time application usually consists of a set of cooperating tasks activated at regular
intervals and/or on particular events. Tasks in real-time system are of two types, periodic tasks
and aperiodic tasks [1]. Periodic tasks are time driven and recur at regular intervals called the
period. Aperiodic tasks are event driven and activated only when certain events occur. The
necessary condition is that real-time tasks must be completed before their deadlines for a
system to be successful.

Weakly hard real-time systems research is motivated by the observation that for many real-time
applications (which are periodic in nature) some deadline misses are acceptable as long as they are
spaced distantly/evenly. Examples for such applications include multimedia processing, real-time
communication and embedded control applications. There have been some previous approaches to
the specification and design of real-time systems that tolerate occasional losses of deadlines.
Hamdaoui and Ramanathan introduced the idea of (m, k)-firm deadlines [3] to model tasks that
have to meet m deadlines every k consecutive instances. If this constraint is violated in any time
window, the system is said to exhibit a dynamic failure (implying possible degradation in system
performance or quality-of-service). The Skip-Over model was introduced by Koren and Shasha [4]
with the notion of skip factor. In this model, a task’s tolerance to deadline misses is characterized
by the skip factor s: in any s consecutive instances of the task at most one can miss its deadline. It
is a particular case of the (m, k)-firm model. They reduce the overload by skipping some task
instances, thus exploiting skips to increase the feasible periodic load. In the Dynamic Window
Constrained Scheduling (DWCS) model motivated by the real-time packet scheduling applications,
a given task needs to complete at least m instances before their deadlines in every non-overlapping
window of k instances [5], [6], [7].

In real-time systems, the systems must schedule the tasks by deadlines and there is no benefit
in finishing the computation early. Making computations energy efficient in the systems, the
battery lifetime can be increased. In order to make them energy efficient, in the scheduling, the
execution time of the tasks can be extended up to the deadline for each task set. This is
possible through dynamic voltage scaling (DVS) technique.

In this paper, we address the problem of the dynamic scheduling of periodic task sets with skip
constraints. In this context, the objectives of a scheduling algorithm are to maximize the
effective Quality of Service (QoS) of periodic tasks defined as the number of task instances
which complete before their deadline and to minimize the energy consumption of tasks.

This paper is organized in the following way. The processor, energy and resource task models
are described in Section 2. Existing scheduling algorithms (without energy efficiency) for
weakly-hard real-time systems are explained in Section 3. Energy-efficiency technique

101

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

proposed to the existing algorithms is described in Section 4. Section 5 discusses the
simulation and analysis of results. Finally Section 6 concludes this paper with future work.

2. SYSTEM MODELS

In this section, we briefly discuss the processor, energy and task models that we have used in
our work.

2.1. Processor Model

The target platform of this work is a single processor system whose only power source is a
battery. We assume that the system has DVS capability, where the processor speed (frequency)
and supply voltage can be dynamically adjusted. We further assume the processor can exist in
two modes: execution mode and stand-by mode. In the stand-by mode, the processor does
not execute any tasks, and consumes only the stand-by power. The CPU switches to stand-by
mode if it is idle. In the execution mode, the CPU speed can vary between a lower bound Smin
and an upper bound Smax. In this case, the power consumed is a function of the CPU
speed/frequency. In any time interval [τ 1, τ 2], the total energy consumption is the integral of
power consumption function, which includes the stand-by and dynamic power consumption
components. We also assume that time and energy overheads due to CPU speed changes are
negligible. We adopt an inter-task DVS model; that is, we assume that the CPU speed can be
changed only at task completion or pre-emption points, following [8], [9].

2.2. Energy Model

The DVS technique reduces the dynamic power dissipation by dynamically scaling the supply
voltage and the clock frequency of processors. The relationship between power dissipation Pd,
supply voltage Vdd, and frequency f is represented by

Pd = Cef X V
2
dd X f and

f = k X (Vdd −Vt
2
)/Vdd,

where Cef is the switched capacitance, k is the constant of circuit, and Vt is the threshold voltage
[10]. The energy consumed to execute task Ti, Ei, is expressed by Ei = Cef X V

2
dd X εi, where εi is

the number of cycles to execute the task. The supply voltage can be reduced by decreasing the
processor speed. It also reduces energy consumption of task. Here we use the task’s execution time
at the maximum supply voltage during assignment to guarantee deadline constraints.

2.3. Task Model

We consider a set of n independent periodic real-time tasks = {T1, T2, …, Tn}. Each task Ti =
(pi, ci, ai, sfi) is characterized by four parameters: the period pi, worst-case execution time ci
which is the upper bound on the computation time of Ti, when all the overheads of scheduling
and resource claiming are included under maximum speed Smax, actual execution time ai
which is the actual time taken by the task during execution, and skip factor sfi which specify
the task’s tolerance to deadline misses. That means that the distance between two consecutive
skips must be at least sfi periods. By definition, the actual execution time of any task is always
less than or equal to its worst-case execution time, that is, ai  ci. We further assume that the
relative deadline di is equal to the period pi. Ti,j denotes the j

th
 instance or job of task Ti. Every

instance of a task is either red or blue [4]. A red task instance must complete before its
deadline: A blue task instance can be aborted at any time. However, if a blue instance
completes successfully, the next task instance is still blue. We use the term hyper-period P to
refer to the least common multiple of all task periods, that is

P = LCM (p1, p2, …, pn)

102

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

We assume pre-emptive scheduling, and that the pre-emption and speed change overheads can
be incorporated in ci if necessary. The process descriptor of Ti is augmented to include two
fields related to the CPU speed: a nominal speed Si

nom
, which is the default speed assigned to

the task when it is about to be dispatched, and an actual speed Si, which is the speed at which
the task is being executed at the specific time instant. Under a constant speed S, the execution
time of task Ti is ci /S. The utilization of task Ti under CPU speed S is given by ui(S) = ci / (pi
S). The aggregate utilization of the task set (under maximum speed) is given by

n

U
tot

=
 ∑

c
i
/p

i
i1

In this paper, we assume that the execution time scales linearly with the CPU speed, ignoring
memory stall effects. This is a conservative but safe assumption since it overestimates the new
execution time when the CPU speed is reduced [11]. Hence, it does not affect the
schedulability analysis.

With the above system models, our problem can be formulated as follows:

Given system = {T1, T2, ···,Tn}, Ti = (pi, ci, ai, sfi), i = 0, ···, n, schedule with a dynamic
scheduling algorithm on a variable voltage processor with discrete supply voltage levels V =
{Vmin, ...,Vmax} and corresponding processor speeds S = {Smin, ...,Smax} such that all
constraints with a skip factor sf are guaranteed and the energy consumption is minimized.

3. EXISTING ALGORITHMS

In this paper, existing three scheduling algorithms designed for overloaded real-time systems
that allow skips are considered for energy efficiency. First two scheduling algorithms namely
Red Tasks Only (RTO) algorithm and Blue When Possible (BWP) algorithm were introduced
by Koren and Shasha [4]. In RTO algorithm, red instances are scheduled as soon as possible
according to Earliest Deadline First (EDF) algorithm while blue ones are always rejected. The
BWP is an improvement of RTO, and this schedules blue instances whenever their execution
does not prevent the red ones from completing within their deadlines. In other words, blue
instances are served in background relatively to red instances. The third algorithm Red as Late
as Possible (RLP) algorithm [2] brings forward the execution of blue task instances so as to
minimize the ratio of aborted blue instances, thus enhancing the QoS (i.e., the total number of
task completions) of periodic tasks. It considered two factors,

 If there are no blue task instances in the system, red task instances are scheduled as

soon as possible according to the EDF algorithm.
 If blue task instances are present in the system, they are scheduled as soon as possible

according to the EDF algorithm, while red task instances are processed as late as
possible according to the EDL algorithm.

3.1. RTO Algorithm

In this algorithm red instances are scheduled as soon as possible according to EDF algorithm,
while blue ones are always rejected. Deadline ties are broken in favour of the task with the
earliest release time. In the deeply red model where all tasks are synchronously activated and
the first sfi−1 instances of every task Ti are red, this algorithm is optimal. Initial RTO schedule
is illustrated in Figure 1 using the task set T = {T0, T1, T2, T3, T4} of five periodic tasks
whose parameters are described in Table 1. Tasks have uniform skip parameter sfi = 2 and the
total processor utilization factor Utot is equal to 1.15.

103

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

Table 1: Task Parameters

Task T1 T2 T3 T4 T5
 c

i 3 4 1 7 2
pi 30 20 15 12 10

Figure 1: RTO Schedule (sfi = 2)

As we can see, the distance between every two skips is exactly sfi periods, thus offering only
the minimal guaranteed QoS level for periodic tasks.

This RTO algorithm is implemented by creating two queues. One is the red queue and the
other one is the blue queue. In the beginning the instances of all the tasks are created. These
task instances may be either red or blue. The red task instances are queued in the red queue
and the blue task instances are queued in the blue queue. The task instances in both the queues
are sorted in the order of increasing deadline.

The red instance with least deadline will be executed first. The scheduler places the task
instances generated periodically in the appropriate queue for execution. The red instances
alone are executed. The blue instances are left as it is without executing. The red hit variable is
incremented after each successful completion of the red task instances. The red miss variable
is incremented if a red task instance misses the deadline. If the distance between two skips is
less than the skip factor then it is considered as a miss. The blue miss variable is incremented
after each completion of the period since there will not be any execution of blue tasks
instances. Whenever a blue task instance is generated it will be missed definitely.

The RTO scheduler creates a feasible schedule for the hyper-period of a given task set. Then
the success ratio is calculated for the task set under schedule. The success ratio is ratio of the
total number of hits to the total number of task instances generated in a hyper-period.

3.2. BWP Algorithm

This algorithm schedules blue instances whenever their execution does not prevent the red ones
from completing within their deadlines. In that sense, it operates in a more flexible way. Deadline
ties are still broken in favour of the task with the earliest release time. Figure 2 shows an illustrative
example of BWP scheduling using the task set previously mentioned in Table 1.

104

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

Figure 2: BWP schedule (sfi = 2)

This Blue When Possible (BWP) algorithm is implemented by creating two queues. One is the
red queue and the other one is the blue queue. In the beginning the instances of all the tasks are
created. These task instances may be either red or blue. The red task instances are queued in
the red queue and the blue task instances are queued in the blue queue. The task instances in
both the queues are sorted in the order of increasing deadline.

The red instance with least deadline will be executed first. After the completion of the first red
instance the next red instance with least deadline will be executed. When there are no red task
instances to execute in the red queue, then the blue task instance with the least deadline is
executed. If a red task instance is created, then immediately this executing blue task will abort
its execution and the red task instance will be executed. As soon as the period of each task is
completed, a new task instance is created and queued in the appropriate queue for execution.

The red hit variable is incremented after each successful completion of the red task instances.
The red miss variable is incremented if a red task instance misses the deadline. If the distance
between two skips is less than the skip factor then it is considered as a skip. The blue hit
variable is incremented after each successful completion of the blue task instances. The blue
miss variable is incremented if a blue task instance misses the deadline or if it is aborted.

3.3. RLP Algorithm

The main drawback of BWP relies on the fact that blue task instances are executed as
background tasks. This leads to abort partially or almost completely executed blue task
instances, thus wasting processor time.

The objective of RLP algorithm is to bring forward the execution of blue task instances so as
to minimize the ratio of aborted blue instances, thus enhancing the actual QoS (i.e., the total
number of task completions) of periodic tasks. From this perspective, RLP scheduling
algorithm, which is a dynamic scheduling algorithm, is specified by the following behaviour:

 If there are no blue task instances in the system, red task instances are scheduled as

soon as possible according to the EDF (Earliest Deadline First) algorithm.
 If blue task instances are present in the system, these ones are scheduled as soon as

possible according to the EDF algorithm (note that it could be according to any other
heuristic), while red task instances are processed as late as possible according to the
EDL algorithm.

Deadline ties are always broken in favour of the task with the earliest release time. The main
idea of this approach is to take advantage of the slack of red periodic task instances.

105

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

Determination of the latest start time for every red request of the periodic task set requires
preliminary construction of the schedule by a variant of the EDL algorithm taking skips into
account [12]. In the EDL schedule established at time τ, we assume that the instance following
immediately a blue instance which is part of the current periodic instance set at time τ, is red.
Indeed, none of the blue task instances is guaranteed to complete within its deadline.
Moreover, Silly-Chetto in [12] proved that the online computation of the slack time is required
only at time instants corresponding to the arrival of a request while no other is already present
on the machine.

In our case, the EDL sequence is constructed not only when a blue task is released (and no other
was already present) but also after a blue task completion if blue tasks remain in the system (the
next task instance of the completed blue task has then to be considered as a blue one). Note that
blue tasks are executed in the idle times computed by EDL and are of same importance beside red
tasks (contrary to BWP which always assigns higher priority to red tasks).

Figure 3: RLP Schedule (sfi = 2)

4. PROPOSED ENERGY EFFICIENT SCHEDULING TECHNIQUES

A major trend in the microprocessor industry is towards energy-efficient mobile computing for
maximal battery life using the concept of performance on demand. The basic idea is to run the
CPU at a voltage and frequency that satisfies the current performance requirement. Dynamic
voltage and frequency scaling is a very effective technique for reducing CPU energy [13] [14].
Significant energy benefits can be achieved by recognizing that peak performance is not
always required and therefore the operating voltage and frequency of the processor can be
dynamically adapted based on instantaneous processing requirement. Examples include the
Intel Pentium III SpeedStep technology [15] which lets the user run the processor at a lower
voltage and frequency when using the battery, LongRun technology from Transmeta’s Crusoe
[16] and PowerNOW! Technology from AMD [17]. In this paper, we propose energy-efficient
technique to the above existing real-time scheduling algorithms that can exploit the variable
voltage and frequency hooks available on processors for improving energy efficiency.

4.1. DVS with Processor Reclamation

DVS allows adjusting processor voltage and frequency at runtime. DVS can be implemented at
various levels of a system, such as in the processor, in the OS scheduler, in the compiler or in the
application. Operating system is the only component with an overview of the entire system,
including task constraints and status, resource usage, etc. Therefore, the most effective and efficient
approaches to reduce energy consumption can be achieved with proper task scheduling algorithms.
It is time consuming to find an optimal schedule where energy consumption is minimized and all
timing constraints are met. Many previous works either proposed offline scheduling for large
energy reduction, or used heuristic methods to reduce scheduling overhead.

106

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

However, while the former approaches are inflexible and too costly to store in memory, the
latter ones may not realize the full potential of energy savings.

Our approach involves pre-computing a global nominal speed for all the tasks statically, and

applying the dynamic reclamation/speed adjustment techniques online whenever possible. At
dispatch time, the speed of each job of Ti is first set to the nominal speed S

nom
. However, its

actual speed Si may be even lower after the application of the dynamic slack reclamation
techniques. The nominal speed must be carefully chosen to guarantee the deadlines of the
mandatory jobs. At run-time, it is possible to further reduce the actual CPU speed, and
consequently reduce the energy consumption, by observing that the schedule has idle intervals
due to the optional jobs that are skipped. Thus, it is possible to use this slack time for dynamic
slow-down making it possible to improve the energy efficiency of the system.

If, at run-time, the mandatory jobs complete execution before their worst case execution time,
then it is possible to exploit the unused processor time to further minimize the energy
consumption by performing dynamic speed reduction. We perform dynamic speed slow-down
by using the Dynamic Reclaiming Algorithm (DRA) [8]. DRA detects early task completions
by comparing the actual schedule to the static optimal schedule. In this schedule, all the jobs
run at the same speed, namely the nominal speed S

nom
, through which all the (selected) jobs

will be able to meet their deadlines even under a worst-case workload. DRA determines the
amount of processor time that a dispatched job can safely use to slow down its speed. This
additional processor time is used to calculate the new lower speed of a currently dispatched
job. A main feature of the scheme is to calculate this additional time quickly, and without
affecting the feasibility of already selected tasks. The earliness is computed in such a way to
allow the low-priority tasks to use the slack time of completed high priority tasks. The exact
formula for calculating the earliness and determining the reduced speed, as well as the details
of the DRA is discussed in [8].

4.2. Hybrid Approach

Extensive power aware scheduling techniques have been published for energy reduction, but
most of them have been focused solely on reducing the processor energy consumption. While
the processor is one of the major power hungry units in the system, other peripherals such as
network interface card, memory banks, disks also consume significant amount of power.
Dynamic Power Down (DPD) technique is used to shut down a processing unit and peripheral
devices to save power when it is idle. There is a minimal time interval that the device can be
feasibly shut down with positive energy-saving gain. Only when the slack time or idle time is
more than this minimum time interval the DPD is used.

In this paper, we combined DPD and DVS techniques in order to make the above existing
algorithms energy-efficient with less overhead and without affecting the QoS provided by
these algorithms to the system. First DVS is applied, and then if possible DPD is applied to
further reduce the energy.

107

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

4.2. Overall Architecture

Figure 4. Overall Architecture Block Diagram

The architecture block diagram of the proposed system is shown in Figure 4. Randomly
generated task sets are given as input for the three existing weakly-hard real-time scheduling
algorithms RTO, BWP and RLP. The existing three algorithms are made energy efficient using
the above discussed DVS and DPD techniques. These two techniques are applied to the
algorithms in a required time multiplexed manner so that it involves less overhead and reduces
the energy effectively without affecting the QoS provided by the algorithms to the System.

5. SIMULATION AND ANALYSIS OF RESULTS

5.1. Simulation

The input to the algorithms is the task set with parameters as mentioned in the task model.
These parameters are generated randomly. The period of a task is randomly generated within a
range 3 to 100, to maintain the hyper period which is the Least Common Multiple (LCM) of
the periods for the given task set within a limit. The periods of the second, third and fourth
tasks are generated as random multiples of the first one. The parameter computation time is
selected in the range 1 to 15, and it also maintained to be less than or equal to period, as the
computation time is mostly less than the period in the case of real-time system. When each
task repeats itself, a red instance or a blue instance of the task should be created. This instance
creation is made random.

The simulated algorithms generate the average success ratio by calculating the success ratio of
each task and calculating the average of them. The algorithms are first tested with two
numbers of tasks. The average success ratio for two tasks with a simulation test running ten
times are noted separately for all the three algorithms This action is repeated for the increased
number of tasks. Each point in the graph is an average of ten simulation runs

The same method is followed for the energy calculation in the simulated energy efficient
algorithms also. The maximum number of tasks taken for the simulation is 10 tasks as the
number of independent tasks in a task set of a real-time system may not exceed this number in
general.

108

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

5.2. Result Analysis

The existing three scheduling algorithms for the weakly-hard real-time systems are simulated and
the graph is plotted with the values of success ratio of periodic task set against the number of tasks
given as input as shown in Figure 5. From the figure it is noted that RLP gives the best QoS out the
three existing algorithms. The RTO algorithm schedules only red task instances. This algorithm
never even tries to schedule any blue task instance. So, it is clear from the graph that it provides
only less QoS than the other two. Even though both BWP and RLP algorithms schedule, both red
and blue task instances, RLP gives the maximum QoS among the three.

Figure 5. Success Ratio

The above existing algorithms are simulated with energy efficiency and the graph is plotted
with the values of normalized energy consumption against the number of tasks in the task set
generated. This is given in Figure 6, and shows that out of three algorithms, RTO consumes
lesser energy. This is due to the fact that RTO schedules only the red task instance leaving all
blue task instances. So, more slack time is available for applying DVS and DPD techniques in
appropriate slack periods thereby reducing the energy consumption to a maximum level. Even
though both BWP and RLP algorithms schedule, both red and blue task instances, RLP
consumes lesser energy.

Figure 6. Normalized Energy Consumption

109

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

6. CONCLUSION

Three existing scheduling algorithms for weakly-hard real-time systems were simulated for
energy efficiency without affecting the QoS using the proposed hybrid approach. From the
simulation results it is found that the RLP scheduling algorithm gives better QoS to the system
and the RTO algorithm consumes less energy among the three. Our aim is to reduce the energy
consumption while maintaining the same QoS offered by the algorithms. Even though RTO
algorithm consumes less energy among the three, it never schedules the blue instances of task
set in the system, which decreases the QoS of the system. However scheduling of blue task
instances in addition to mandatory red task instances will increase the QoS of the system. It is
also studied from the results that, when QoS as well as energy efficiency are to be maintained
together, the RLP scheduling algorithm is the efficient one. The simulation results show that
RLP algorithm is more efficient in considering both QoS and energy consumption among the
three algorithms studied.

The proposed energy-efficient algorithms are designed for single processor system which
considers only independent tasks. However, there exists scope for it being extended to multi
processor or distributed systems which consider dependant tasks with precedence and resource
constraints along with the timing constraints. Though such an extension requires more efficient
algorithms and power scheduling techniques, it can be worked out.

REFERENCES

[1] K. G. Shin and P. Ramanathan, (1994) “Real-time computing: A new discipline of Computer
Science and Engineering,” Proc. IEEE, Vol. 82, no.1, pp 6-24.

[2] Maryline Chetto and Audrey Marchand 2007 Dynamic Scheduling of Skippable Periodic
 Tasks in Weakly-Hard Real-Time Systems,” Proc. IEEE International Conference
 and Workshops on the Engineering of Computer-Based Systems.
[3] M. Hamdaoui and P. Ramanathan, (1995) “A Dynamic Priority Assignment Technique for
 Streams with (m, k)-firm deadlines,” IEEE Transactions on Computers, Vol. 44, No. 4, pp 1443-
 1451.
[4] G. Koren and D. Shasha, (1995) “An Approach To Handling Overloaded Systems That Allow
 Skips,” Proc. 16th IEEE Real-Time Systems Symposium (RTSS’95), Pisa, Italy, pp 110-119.
[5] A.K. Mok and W. Wang. Window-constrained real-time periodic task scheduling. Proc. 21st
 IEEE Real-Time Systems Symposium (RTSS’00), Orlando, FL, Nov. 2000.
[6] R. West and C. Poellabauer, (2000) “Analysis of a window-constrained scheduler for real-time

 and best-effort packet streams,” Proe. ,21st(IEEE)" Real-Time Systems Symposium (RTSS'00),
 Orlando, FL

[7] R. West, Y. Zhang, K. Schwan, and C. Poellabauer, (2004) “Dynamic window-constrained
 scheduling of real-time streams in media servers,” IEEE Transactions on Computers, vol. 53,
 no. 6, pp. 744 – 759.
[8] H. Aydin, R. Melhem, D. Mosse and P.M. Alvarez, (2004) “Power-aware Scheduling for
 Periodic Real-time Tasks,” IEEE Transactions on Computers, vol. 53, no. 5, pp 584-600.
[9] P. Pillai and K.G. Shin, (2001) “Real-time dynamic voltage scaling for low power embedded
 operating systems,” Proc. 18th ACM Symposium on Operating Systems Principles (SOSP’01),
 Banff, Canada.
[10] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, (1992) “Low-Power CMOS Digital
 Design,” IEEE Journal of Solid- State Circuits, 27(4), Apr. pp. 473-484.
[11] K. Seth, A. Anantaraman, F. Mueller and E. Rotenberg, (2003) “FAST: Frequency-Aware Static
 Timing Analysis,” Proc. 24th IEEE Real-Time Systems Symposium (RTSS’03), Cancun, Mexico.
[12] A. Marchand, M. Silly-Chetto, (2006) “Dynamic Real-Time Scheduling of Firm Periodic Tasks
 with Hard and Soft Aperiodic Tasks,” Journal of Real-Time Systems, Vol. 32, No. 1-2, pp 21-47.
[13] T. Burd, et. al., (2000) “A Dynamic Voltage Scaled Microprocessor System,” ISSCC, pp 294-
 295.
[14] T. Pering, T. Burd and R. Broderson, (1998) “The Simulation and Evaluation of Dynamic
 Voltage Scaling Algorithms,” International Symposium on Low Power Electronics and Design,
 pp. 76-81.

 110

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.1, No.1,June 2018.

[15] http://www.intel.com/mobile/pentiumIII/ist.htm
[16] http://www.transmeta.com/crusoe/lowpower/longrun.html
[17] http://www.amd.com/products/cpg/mobile/powernow.html

Authors

Mrs. Santhi Baskaran received her B.E. degree in Computer Science and
Engineering from University of Madras, Chennai, India in 1989 and M.Tech.
degree in Computer Science and Engineering from Pondicherry University,
Puducherry, India in 1998. She served as Senior Lecturer and Head of the
Computer Technology Department, in the Polytechnic Colleges, Puducherry,
India for eleven years, since 1989. She joined Pondicherry Engineering College,
Puducherry, India in 2000 and currently working as Associate Professor in the
Department of information Technology. Now she is pursuing her PhD degree in

Computer Science and Engineering. Her areas of interest include Real-time systems, embedded systems
and operating systems. She has published research papers in International and National Conferences. She
is a Life member of Indian Society for Technical Education and Computer Society of India.

Prof. Dr. P. Thambidurai is a Member of IEEE Computer Society. He received
his PhD degree in Computer science from the Alagappa University, Karaikudi, India
in 1995. From 1999, he served as Professor and Head of the Department of
Computer Science & Engineering and Information Technology, Pondicherry
Engineering College, Puducherry, India, till August 2006. Now he is the Principal for
Perunthalaivar Kamarajar Institute of Engineering and Technology (PKIET) an
Government institute at Karaikal, India. His areas of interest include Natural
Language Processing, Data Compression and Real-time systems. He has

published over 50 research papers in International Journals and Conferences. He is a Fellow of
Institution of Engineers (India). He is a Life member of Indian Society for Technical Education and
Computer Society of India. He served as Chairman of Computer Society of India, Pondicherry Chapter
for two years. Prof. P.Thambidurai is serving as an Expert member to All India Council for Technical
Education (AICTE) and an Adviser to Union Public Service Commission (UPSC), Govt. of India. He is
also an Expert Member of IT Task Force and Implementation of e-Governance in the UT of Puducherry.

111

